739 research outputs found

    The use of twin screw extruders for feeding coal against pressures of up to 1500 PSI

    Get PDF
    Recent tests with a twin-screw, co-rotating extruder which was successfully used to convey and feed coal against pressures of up to 1500 psi are described. Intermeshing and self-wiping, co-rotating twin-screws give greatly improved conveying and pressure built-up capabilities and avoid hangup and eventual decomposition of coal particles in the screw flights. The conveying action of intermeshing, self-wiping, co-rotating extruder systems approaches that of a positive displacement pump. With this feature, it is possible to maintain very accurate control over all aspects of product conveyance in the extruder, i.e., intake, conveyance and pressure buildup

    Optimal Levels of Inputs to Control Listeria monocytogenes Contamination at a Smoked Fish Plant

    Get PDF
    Reducing the incidence of listeriosis from contaminated food has significant social health benefits, but reduction requires the use of additional or higher quality inputs at higher costs. We estimate the impact of three inputs in a food processing plant on the prevalence of L. monocytogenes contaminated finished cold smoked salmon. These three inputs were non-contamination of the raw fish fillets, non-contamination of the plant environment, and rate of glove changes on workers. We then estimate the levels of these inputs to use such that the marginal cost of these inputs become equal to the increased social health benefit of reduction in human listeriosis. Since the costs of these inputs are borne by the food processing plant, which may not be able to secure a higher product price because of asymmetric information, we show how social sub-optimal use of these inputs may result.Food Consumption/Nutrition/Food Safety,

    Linear magnetoresistance in a quasi-free two dimensional electron gas in an ultra-high mobility GaAs quantum well

    Get PDF
    We report a magnetotransport study of an ultra-high mobility (Όˉ≈25×106\bar{\mu}\approx 25\times 10^6\,cm2^2\,V−1^{-1}\,s−1^{-1}) nn-type GaAs quantum well up to 33 T. A strong linear magnetoresistance (LMR) of the order of 105^5 % is observed in a wide temperature range between 0.3 K and 60 K. The simplicity of our material system with a single sub-band occupation and free electron dispersion rules out most complicated mechanisms that could give rise to the observed LMR. At low temperature, quantum oscillations are superimposed onto the LMR. Both, the featureless LMR at high TT and the quantum oscillations at low TT follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α\alpha that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond Îœ=1\nu=1 that likely originate from a different transport mechanism for the composite fermions

    Temperature-driven transition from a semiconductor to a topological insulator

    Get PDF
    We report on a temperature-induced transition from a conventional semiconductor to a two-dimensional topological insulator investigated by means of magnetotransport experiments on HgTe/CdTe quantum well structures. At low temperatures, we are in the regime of the quantum spin Hall effect and observe an ambipolar quantized Hall resistance by tuning the Fermi energy through the bulk band gap. At room temperature, we find electron and hole conduction that can be described by a classical two-carrier model. Above the onset of quantized magnetotransport at low temperature, we observe a pronounced linear magnetoresistance that develops from a classical quadratic low-field magnetoresistance if electrons and holes coexist. Temperature-dependent bulk band structure calculations predict a transition from a conventional semiconductor to a topological insulator in the regime where the linear magnetoresistance occurs.Comment: 7 pages, 6 figure

    Novel porcine repetitive elements

    Get PDF
    BACKGROUND: Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. RESULTS: We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI). These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute), covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. CONCLUSION: The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics

    Quantum Spin Hall Insulator State in HgTe Quantum Wells

    Full text link
    Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.Comment: 16 pages, 5 figure

    Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3

    Get PDF
    We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bulk and surface carriers. The magneto- resistance of Bi2Se3 is found to be highly anisotropic. In the presence of a parallel electric and magnetic field, we observe a strong negative longitudinal magneto-resistance that has been consid- ered as a smoking-gun for the presence of chiral fermions in a certain class of semi-metals due to the so-called axial anomaly. Its observation in a three-dimensional topological insulator implies that the axial anomaly may be in fact a far more generic phenomenon than originally thought.Comment: 6 pages, 4 figure

    Global impacts of energy demand on the freshwater resources of nations

    Get PDF
    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy
    • 

    corecore